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1. INTRODUCTION
The optical properties of monolayers of small particles are of
interest, for instance, in the design of diverse physical and
chemical sensors consisting of a monolayer of metallic parti-
cles interacting with their environment, and where changes of
their physical or chemical state are detected through changes
of their optical reflectivity (e.g., see [1–4]).

In practice, the particles of a monolayer are usually sup-
ported and randomly located over a flat substrate. When
the particles in a monolayer are very small compared to the
wavelength of an incident beam, the beam will be reflected
only specularly. However, when particles are not that small,
the beam will be reflected partly specularly, but it will be also
scattered in all different directions. Furthermore, if the size of
the particles is comparable to or larger than the wavelength of
the incident radiation, almost all light will be scattered. But
besides their size, the contrast in their index of refraction re-
lative to the one of the environment also becomes a relevant
factor for their scattering power: the larger the contrast, the
larger the scattering.

It is found convenient to split the fields reflected and trans-
mitted by the monolayer into two components: a coherent
component and a diffuse one. The coherent component tra-
vels in only one direction and its amplitude is independent
on the specific random location of the particles, while the dif-
fuse component travels in many directions with amplitudes
that do depend on the specific location of the particles. There-
fore if one takes an ensemble average over the random loca-
tion of the particles, only the coherent component will
survive, and for this reason the coherent component is also
called the average field, while the diffuse component is known
also as the fluctuation field, meaning with this, that it is the
field left after the average field is subtracted from the total

field. Being the power a quadratic quantity in the fields that
travels in the direction of the Poynting vector, the ensemble
average of the power carried by the reflected and transmitted
fields has two components, one coming from the average of
the product of the amplitudes of the coherent field and travel-
ing in only one direction, plus another one coming from the
average of the product of the amplitudes of the fluctuating
field and traveling in many different directions. The cross pro-
duct of the coherent and fluctuating amplitudes averages to
zero. We define the coherent reflectance and the coherent
transmittance of a random monolayer as the ratio between
the average power carried only by the coherent component
of the reflected or transmitted fields and the incident power.
The coherent reflectance actually corresponds to what
authors usually refer as reflectivity and it is the one that will
be considered in this work. The relative amount of average
power carried by the coherent and the diffuse components
depends on the angle of incidence as well as on the size
and refractive index of the particles. In experiments it is re-
latively simple to separate the average power carried by the
coherent component from the one carried by the diffuse one
in the the specular direction, this is done by performing power
measurements as a function of the angle and interpolating the
measurements of the diffuse component across the specular
direction.

The problem of reflection and transmission of light by a
monolayer of very small particles, either supported by a flat
interface or embedded in a transparent medium, has received
extensive attention over the years [5–17]. In most of these
works an effective-medium approach has been developed
and used. If the particles are small, but not sufficiently small,
the effective-medium approach requires an extension [10–12].
But when the size of the particles is comparable to or larger
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than the wavelength of the incident radiation the rewards
from effective-medium theories are lost in many respects
and a multiple-scattering approach is required [18,19,20]. A
fairly complete presentation of the multiple-scattering ap-
proach for electromagnetic wave propagation through ran-
dom systems of discrete scatterers can be found in [21].

The multiple-scattering approach has been used by a few
authors, at different levels of approximation, in the problem
of coherent reflection and transmission of light from a mono-
layer of particles supported on a flat surface [22–29]. Up to
date, either the single-scattering approximation (SS) or nu-
merical solutions to the so called quasi-crystalline approxima-
tion (QCA) in the hierarchy of multiple-scattering equations,
has been used. Numerical solutions within the QCA
[24,26,28,30] require a good deal of computational effort
and, as most numerical schemes, they offer little physical in-
sight into the problem. A relatively simple heuristic model
(HM) that goes beyond the SS while keeping a comparable
simplicity was recently put forth by our group [29]. This
HM behaves well for all angles of incidence and particle sizes.
It is, however, limited to a small surface coverage of the mono-
layer. The results of this model were found to be consistent
with experimental data of reflectivity measurements in an in-
ternal reflection configuration from a sparse monolayer of
large particles adsorbed at the base of a glass prism [29].
The simplicity of the expressions for the reflection and trans-
mission coefficients for the coherent wave of the HM makes it
very attractive for the straightforward analysis of new pro-
blems in practical applications. However, its heuristic nature
prevents a deeper analysis of the model and its limitations,
undermining the confidence of its use.

Therefore our present objective in this paper is to derive
closed-form expressions for the reflectivity and transmissivity
coefficients of a random monolayer of particles and with
similar simplicity to the heuristc model in [29], but derived
from a multiple-scattering theory with well-identifiable
approximations.

In this paper we start by reviewing some basic concepts
and setting, within the QCA, an integral equation for the aver-
age electric field exciting the particles in a monolayer illumi-
nated by an external plane monochromatic wave. We obtain
an approximate solution to this equation using a simple cor-
relation-hole model for the two-particle correlation function
and assuming an Ansatz for the exciting field consisting of
two effective traveling plane monochromatic waves. We show
that, to a good approximation our Ansatz solves the QCA
equation when the surface-coverage-fraction is moderately
small. In this way we obtain analytical expressions for the co-
herent reflection and transmission coefficients which behave
well at any angle of incidence and particle size. These results,
while retaining comparable simplicity, reduce to the HM and
the SS previously mentioned for sufficiently small coverage
fraction. The model so obtained can be readily used in many
applications relating optical phenomena with disordered
monolayers of particles.

In Section 2 we review the multiple-scattering formalism
and the QCA. In Section 3 we find approximate solutions
to the QCA integral equation for a free-standing monolayer
of particles and in Section 4 we provide formulas to take into
account the presence of the substrate supporting the particles.
In Section 5 we present a few numerical examples of the

predictions of the formulas for the coherent reflectance
and transmittance of free-standing and supported monolayers.
Finally in Section 6 a couple of remarks about the behavior of
our model for grazing incidence and in the limit of small par-
ticles are made and in Section 7 we present a summary and
our conclusions.

2. MULTIPLE-SCATTERING FORMALISM
Let us first assume a system of N identical particles randomly
positioned within a volume V in space. Let us assume the par-
ticles are embedded in a homogeneous, nonmagnetic medium
of refractive index nm. We will refer to this medium surround-
ing the particles as the matrix. For simplicity let us suppose all
particles are spherical and have the same radius a and refrac-
tive index np. We will indicate the position of the particles
in space by the coordinates of their centers, rn, with
n � 1; 2;…N . In a monolayer of identical particles, the cen-
ters of all particles lie on a plane as illustrated in Fig. 1. How-
ever, let us assume here the more general case of a random
system of particles whose centers are enclosed in a thin film of
volume V . The monolayer case is later obtained by letting the
thickness of the film become arbitrarily thin.

Let us suppose the plane wave Ei�r; t� � E0 exp�iki · r −
iωt�̂ei is incident to the system of particles, where ki � kiyây �
kizâz with kiy � km sin θi, kiz � km cos θi, km � 2πnm∕λ, and λ
is the wavelength of light in vacuum. Here âx, ây, and âz de-
note unit vectors along the x, y, and z Cartesian axes, respec-
tively. The incident electric field, oscillating at a frequency ω,
induces currents in each particle and these currents produce a
field that we will call the induced field. Since we assume the
particles have a linear response to an electromagnetic excita-
tion at the frequency of the incident light, the induced electric
field produced by the nth particle oscillates also at a fre-
quency ω and its amplitude can be written as

Eind
n �r;ω� � iωμ0

Z
G
↔
�r; r0;ω� · J�n�ind�r0;ω�d3r0; (1a)

where the integral is over all space, μ0 is the magnetic perme-
ability of vacuum, and J�n�ind�r0;ω� is the total current density
induced within the particles which is in excess of the current
that would have been induced in the matrix (the background
medium) without the particle. J�n�ind�r0;ω� includes all excess
currents, whether they are polarization, conduction, or mag-
netization currents. The total induced field is the sum of
the fields produced by the currents induced in all particles.
Here G

↔
�r; r0;ω� is the dyadic Green's function of the vector

wave equation in the background medium which obeys

�∇ ×∇ × −k2M�G
↔
�r; r0;ω� � 1

↔
δ�r − r0�; (1b)

where kM ≡ 2π∕λM and λM is the wavelength of the free-
propagating waves in the matrix oscillating with frequency
ω. As in Eq. (1a), when the limits of an integral are not indi-
cated it is meant that the integral is over all the space available
to the integration variable, otherwise, the limits of the inte-
grals will be indicated.

Let us recall that G
↔

is singular at r � r0 and it is therefore
undefined in the sense of a classical function and one has to
be cautious when performing the integration in Eq. (1a) in the
source region. Besides, the presence of the delta function in
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Eq. (1b) prescribes that G
↔

should be considered as a distribu-
tion or generalized function, which implies that only the inte-

gral over G
↔

times a wide class of test functions makes sense.
Nevertheless there is also a standard procedure for taking
care of the singularities in the source region in Eq. (1a):
the principal volume integration, in which the singular points
are surrounded by either an infinitesimal or a finite small vo-
lume of a definite shape, whose contributions to the integral
are evaluated separately. It has been shown that, at least for
the dyadic Green's’s function in free space, this procedure
yields the correct result (see for example [31]), being also
the one used in this work.

Here, our definition of induced fields includes the fields
inside and outside the particles. We can separate the field in-
duced by one given particle in the field scattered by that par-
ticle, defined only outside the particle, and the induced
internal-field, defined only inside the particle. The induced
internal-field in a particle is given by the total internal-field
minus the external field exciting that particle.

The current induced in a particle centered at rn can be re-
lated to the exciting field, that is, the external field plus the
field scattered by all other particles but the nth one, through
a linear relation known as nonlocal Ohm’s law, and given by

J�n�ind�r0� �
Z

d3r00 σ↔�r0 − rn; r00 − rn� · Eexc
n �r00�; (2a)

where σ↔ is defined through Eq. (2a) and is called generalized
nonlocal conductivity [20]. For brevity in the notation we have
suppressed the argument ω and we will continue to do that
unless it leads to confusion. It has been also shown that
σ↔ � �1∕iωμ0�T

↔
, where T

↔
is the transition operator (T matrix)

used in scattering theory [20]. This relation serves to connect
the effective-medium approach centered in the calculation of
an effective conductivity with the multiple-scattering ap-
proach. Let us recall that T

↔
obeys a Lippmann–Schwinger in-

tegral equation, which in our case can be written as [20,32]

T
↔
�r; r0� � U�r�

�
δ�r − r0�1

↔
�

Z
VS

d3r00G
↔
�r; r00� · T

↔
�r00; r0�

�
;

(2b)

where Vs is the volume of the spheres and U�r� � 0 for r∉VS

and U�r� � iωμ0�σS − σM � for r ∈ VS . Here σS and σM are the
local complex conductivities of the spheres and of the matrix,
respectively. Since we assume that, in the frequency range of
interest the matrix is nondissipative, σM � −iω�εM − ε0� will
be purely imaginary, that is, the dielectric function εM of
the matrix will be real. We are using SI units. Although one
rarely has an explicit expression for the transition operator,
in this work we will only use a few of its projections in Fourier
space which can be related to the elements of the amplitude
scattering matrix of an isolated particle (see for instance
[18]–[21]). These, in turn, are readily calculated for spherical
particles using Mie theory (see for example [32]). The total
electric field defined as the incident field plus the field in-
duced in the system of N particles, can be written as

E�r� � Ei�r� �
XN
n�1

Z
d3r0d3r00G

↔
�r; r0� · T

↔
�r0 − rn; r00 − rn�

· Eexc
n �r00�; (3)

where Eexc
n is the exciting field at the nth particle and it is a

function of r00. It is also a function of rn and of the position of
all other scatterers. Although the range of integration in both
integrals is over all space one has to recall that T�r; r0� is zero
whenever r∉VS or r0∉VS .

For a given configuration of N particles we can set up a
system of N equations for the N exciting fields at each
particle:

Eexc
j �r� � Ei�r� �

XN
n≠j

Eind
n �r�; (4)

for j � 1…N . If one solves, in principle, this system of N in-
tegral equations and introduces the calculated exciting fields
in Eq. (3), one will get the total electric field for that particular
configuration of particles. To obtain the average field over all
possible configurations, one must calculate the induced fields
for all allowed configurations and average them weighted by
the probability of each configuration. Obviously, the genera-
tion of the different possible configurations, as well as the
probability of each configuration, will depend on the statisti-
cal characteristics of the specific physical system that one
would like to simulate. Besides, an exact numerical calcula-
tion will be limited to a finite (and rather small) number of
particles; it will be time consuming and would not provide
much physical insight. It would not be suitable, for instance,
for inversion algorithms to retrieve the optical parameters of a
monolayer from experimental data in a sensing experiment.
Clearly, for applications-oriented work it is attractive to have
simple approximate models, preferably with results that can
be expressed with closed-form expressions. To this end, we
may try to average formally the equations above and solve
them in some approximate scheme. By formally we mean that
the configurations and their probability will be taken as given.
Later on we will choose them for a specific system.

A. Configurational Averages
All statistical properties of a random system of N particles are
specified by the N -dimensional probability density function
p�R� of finding the N particles in a specific configuration,
where R � �r1; r2;…; rN � is the set of the coordinate vectors
of the centers of the N particles. The configurational average
of any given quantity is taken by integrating over all space on
each of the N position-vectors �r1; r2;…; rN � the quantity to be
averaged times p�R�. Thus, the average of the electric field
requires the evaluation of N volume integrals, and can be for-
mally written as

hE�r�i �
Z

d3r1

Z
d3r2…

Z
d3rnp�R�E�r;R�; (5)

where E�r;R� is the electric field at r for a specific configura-
tion R � �r1; r2;…; rN �. Then the average of the terms in
Eq. (3) gives
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hE�r�i � Ei�r� �
XN
n�1

Z
G
↔
�r; r0�

· hT
↔
�r0 − rn; r00 − rn� · Eexc

n �r00;R�id3r0d3r00. (6)

The termwith the configurational average inside the integrand
on the right-hand side of the latter equation can be calculated
by taking first the conditional average of the term keeping the
position of the nth scatterer fixed and then averaging over the
position of the nth scatterer. That is, we can write

hT
↔
�r0 − rn; r00 − rn� · Eexc

n �r00;R�i �
Z

d3rnp�rn�

×
YN
j≠n

Z
d3rjp�Rjrn�T

↔
�r0

− rn; r00 − rn� · Eexc
n �r00;R�;

(7)

where p�Rjrn� is the conditional probability density function
of finding a given configuration R given that the nth scatterer
is at rn. Since T

↔
�r0 − rn; r00 − rn� depends only on the position

of the nth scatterer, it can be moved out from all integrals in
the latter expression except the one over the position of the
nth scatterer. We then write

hT
↔
�r0−rn;r00−rn� ·Eexc

n �r00;R�i�
Z
d3rnp�rn�T

↔
�r0−rn;r00−rn�·

×hEexc
n �r00;R�in; (8)

where hin denotes average with the nth scatterer fixed at rn.
Note that

hEexc
n �r00;R�in �

YN
j≠n

Z
d3rjp�Rjrn� · Eexc

n �r00;R� (9)

is a function of r00 and rn. In order to make this dependence
more explicit we modify the notation and suppress in
hEexc

n �r00;R�in the arguments inside the brackets and replace
hEexc

n �r00;R�in by hEexc
n in�r00; rn�, where the dependence on the

arguments stands explicitly outside the brackets.
We now assume a particular system of volume V in which

the probability density of finding the center of any scatterer
within this volume is uniform, that is, p�rn� � 1∕V for rn ∈ V

and is zero otherwise (and this is for all n). Thus the average
hEexc

n in�r00; rn� is the same for all particles and we can replace
the sum in Eq. (6) by the factor N . Then, Eq. (6) becomes

hE�r�i � Ei�r� � ρ
Z

d3r0G
↔
�r; r0�

Z
d3r00

×
Z

d3rnp�rn�T
↔
�r0 − rn; r00 − rn� · hEexc

n in�r00; rn�;
(10)

where ρ � N∕V is the particle number density.
Now, we must find an equation for the average exciting

field. Averaging all terms in the system of equations in (5)
gives

hEexc
j �r;R�i

j
� Ei�r� �

Z
d3r0G

↔
�r; r0�

·
Z

d3r00
XN
n≠j

hT
↔
�r0 − rn; r00 − rn� · hEexc

n �r00;R�injij ;

(11)

where hEexc
n �r00;R�inj means averaging holding fixed both, the

jth particle at rj and the nth particle at rn. Note that

hT
↔
�r0 − rn; r00 − rn� · hEexc

n �r00;R�injij
�

Z
d3rnp�rnjrj�T

↔
�r0 − rn; r00 − rn� · hEexc

n �r00;R�inj; (12)

where p�rnjrj� is the conditional probability density function
of finding the nth scatterer at rn given that the jth particle is at
rj . We can write p�rnjrj� � g�rn; rj�∕�V − Vb� ≅ g�rn; rj�∕V ,
where g is the so called two-particle correlation function (it
is zero if either rn or rj are closer to each other than one par-
ticle diameter) and Vb is the exclusion volume of one
particle (Vb ≪ V).

We get

hEexc
j �r;R�i

j
� Ei�r� �

Z
d3r0G

↔
�r; r0�

·
Z

d3r00 ρ
Z

d3rng�rn; rj�T
↔
�→ r 0 − rn; r00 − rn�

· hEexc
n �r00;R�inj; (13)

where we used p�rnjrj� ≅ g�rn; rj�∕V , replaced the sum
P

N
n≠j

by the factor �N − 1�, and then we took �N − 1�∕V ≅ N∕V � ρ.
Note that hEexc

j �r;R�i
j
is a function of r and rj only, whereas

hEexc
n �r00;R�inj is a function of r00, rj and rn. Formally we can

write

hEexc
n �r⃗00;R�ijn �

YN
m≠n;j

Z
d3rmp�Rjr⃗n; r⃗j�E⃗exc

n �r⃗00;R�; (14)

where p�Rjrn; rj� is the density of conditional probability func-
tion of finding the configuration R given that the nth and jth
particles are kept fixed at rn and rj , respectively. Also,
although the integrals over d3r0 and d3r00 in Eq. (13) extend
over all space, the transition operator T

↔
�r0 − rn; r00 − rn� is zero

whenever either of its arguments lies outside the volume oc-
cupied by the nth particle.

At this point we introduce the so called QCA (see for
example [21,23,28,30,33]) by assuming

hEexc
n �r;R�inj ≅ hEexc

n �r;R�in ≡ hEexc
n in�r; rn�; (15)

where we have used here the notation introduced after
Eq. (9). To simplify the notation even further, let us remove
the average signs and write explicitly only the arguments of
the average exciting field within the QCA. That is, instead
of hEexc

n in�r; rn� one writes simply Eexc
n �r; rn�. Then, by substi-

tuting Eq. (15) into Eq. (13) one obtains a true integral equa-
tion for the unknown function Eexc

n �r; rn�, called the QCA
integral equation, that can be written as,
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Eexc
j �r; rj� � Ei�r� �

Z
d3r0 G

↔
�r; r0�

·
Z

d3r00ρ
Z

d3rng�rn; rj�T
↔
�r0 − rn; r00 − rn�

· Eexc
n �r00; rn�; (16)

which in the case of spheres should be satisfied only for jr −
rjj ≤ a and note that Eexc

n �r00; rn� is defined only for jr00 − rnj ≤ a.
As already said, we are interested in approximate solutions

leading to simple analytical expressions valid for any size of
particles and any angle of incidence. In the next section we
develop such a model using Eq. (16) as a starting point.

3. MODEL FOR A FREE-STANDING
MONOLAYER
We aim to develop a model for the coherent reflection and
transmission of light from a monolayer of infinite extent com-
posed by identical spherical particles of radius a, in which all
particles have, on the average, the same surroundings. We will
assume that the centers of all particles lie on the xy-plane as
illustrated in Fig. 1. However, for the sake of generality and for
future reference we will first assume that the center of all par-
ticles lie within a thin layer of width Δz < a and finite area A.
We assume there are N particles in the system and the area of
their projection on the x–y plane is a fraction Θ of the area A

and Θ is referred to as the surface-coverage fraction. When
suitable we will take the limits Δz → 0, A → ∞ and N → ∞

keeping Θ constant. Then, the volume V of space available
to the centers of the particles (not to the whole particles)
is Δz × A. We will assume the area A is a square of sides
2L with the origin of coordinates placed at the center of
the square, as shown in Fig. 1. Thus the integrals in
Eq. (16) over dxn and dyn, the available location of the nth
particle, are from −L to �L and we shall take the limit L →

∞ to make the monolayer of infinite extent while keeping
the coverage fixed.

Now, if the monolayer of infinite extent is illuminated by a
plane wave, then the average exciting field for any given par-
ticle located at rp must depend only on r − rp, except for a
phase factor. This is because the system is statistically homo-

geneous (p�→ rn� is uniform within V), thus on the average,
the surroundings of any given particle are equivalent and the
only difference in the calculation of the average exciting field,
is the difference in phase of the incident wave at the location
of any given particle. In other words, if we calculate the ex-
citing field for the pth particle while keeping the particle fixed
at rp and obtain Eexc

p , then relocating the particle along the xy-
plane to rp � sjj with sjj � sxâx � syây, and taking the average
again, must yield the same field but multiplied by the phase
factor exp�ikijj · sjj�. This is actually true only in the limit of
a monolayer of infinite extent (A → ∞). Only then all particles
see on the average the same surroundings and there are no
border effects. Therefore, we can write

Eexc
p �r; rp� � exp�ikijj · rp�F�r − rp�; (17)

for p � 1; 2;…N and F�r − rp� is an electric field common to
all particles.

We can write the fields Eexc
j and Eexc

n appearing in Eq. (16)
in the form given in Eq. (17) replacing p by j and n accord-
ingly. We then obtain an integral equation for the function
F�r − rp�. Therefore, the calculation of the average electric
field within the QCA is formally reduced to solving the result-
ing integral equation for the field factor F�r − rp�. Once we
know F we can calculate the average electric field in
Eq. (10) using the resulting exciting field given by Eq. (17).

A. Ansatz for the Exciting Field
In order to obtain a relatively simple and useful model for the
coherent reflection and transmission coefficients of a free-
standing monolayer we seek an approximate solution to
the QCA integral equation [Eq. (16)] by assuming that F is gi-
ven in terms of propagating plane waves.

We could start by assuming a single plane wave,
F�r − rp� � E1 exp�ik1 · �r − rp��̂e1. However, when intro-
duced on the right-hand side of Eq. (16) consistency cannot
be achieved because after performing the indicated integrals,
one obtains, among other contributions, another plane wave
traveling in the specular direction. (This will become apparent
below.) The specular direction in this case is the direction of
a plane wave reflected specularly on the plane of the

∆z

y

x

z 

∆z

z 

y

ik

rk

2L

2L

θi

(a) (b)

Fig. 1. (Color online) Sketch of the (a) side view and (b) top view of a free-standing monolayer of particles. The incident wave comes from z < 0 at
an angle θi with respect to the monolayer’s normal (the z-axis). The incident wave vector is assumed to be in the y–z plane.
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monolayer, that is, the xy-plane. Thus the wavevector for the
specularly reflected wave has the same wavevector compo-
nents but with the sign of the z component changed. There-
fore to obtain a consistent equation for F in the form of
traveling plane waves, we have to assume to assume that F
is a sum of a plane wave plus a specularly reflected wave.
Therefore our Ansatz to solve the integral equation for the
function F is

F�r − rp� � E1 exp�ik1 · �r − rp��̂e1 � E2 exp�ik2 · �r − rp��̂e2;
(18a)

where k1 � k1xâx � k1yây � k1zâz and k2 � k2xâx�
k2yây − k2zâz. The exciting field at any of the particles is then
of the form

Eexc
p �r; rp� � E1 exp�i�kijj − k1� · rp� exp�ik1 · r�̂e1

� E2 exp�i�kijj − k2� · rp� exp�ik2 · r�̂e2. (18b)

Using this Ansatz in the right- and left-hand sides of Eq. (16)
yields a consistency equation from which the unknowns, E1,
E2, k1, k2, ê1, and ê2 can be determined.

B. Induced Fields
Wewill show in some detail the calculation of the second term
on the right-hand side of Eq. (16) which involve multiple in-
tegrals. For simplicity in the presentation we will use here
only one traveling plane wave, which could be either one
in the Ansatz given in Eq. (18). At the end, we will add the
contribution from both plane waves.

Thus, let us first consider, F � Eexc exp�ikexc · �r − rp��̂eexc,
where Eexc, kexc, and êexc can be either E1, k1 and ê1,
or E2, k2, and ê2. From Eq. (17) we get, Eexc

p �r; rp� �
Eexc exp�ikD · rp� exp�ikexc · r�eexc, where kD ≡ �kijj − kexc�.
We will assume that the centers of all the particles lie with
uniform density of probability within a thin layer in space
of widthΔz and area 2L × 2L. We should remark that the cen-
ters of all particles are contained within Δz although the par-
ticles themselves extend outside Δz. When suitable we take
the limit Δz → 0 and L → ∞ to define a strictly flat monolayer
of infinite extent.

For simplicity we will assume the particle correlation func-
tion is a correlation hole; this means it is unity except within a
sphere or radius 2a around rj , where it is zero.

g�rj − rn� �
�
0 if jrj − rnj < 2a
1 if jrj − rnj > 2a . (19)

This assumption is a good approximation only for moderately
small density of particles. When the density of particles is not
small, even if there is no interaction among the particles ex-
cept for being impenetrable (hard sphere), some ordering of
the particles arises. For instance, for closest packing of the
particles, the particles touch each other and the distance be-
tween the center of one particle and its nearest neighbors is
one diameter. We will not find any particles with their centers
at a distance slightly larger than one diameter. Thus, for larger
densities, the two-particle correlation function is still equal to
zero for jrj − rnj < 2a, but for jrj − rnj > 2a it has oscillations
around the value one, with decreasing amplitudes as jrj − rnj
increases. For higher density of particles one can use an ana-

lytical approximation to the pair-correlation function such as
the Percus–Yevick one [34] or simply generate it numerically
from a Monte Carlo simulation [35]. Actually, for even higher
densities the three-particle correlation function may be
needed [33].

Now, to perform the integrals in the right-hand side of
Eq. (16) with an exciting field in the form of a plane wave,
it is convenient to express the transition operator in terms
of its momentum representation,

T
↔
�r0; r00� � 1

�2π�6
Z

d3p0
Z

d3p00 exp�ip0 · r0�T
↔
�p0; p00�

× exp�−ip00 · r00�; (20)

and use a plane-wave expansion of the dyadic Green's’s func-
tion G

↔
�r; r0� which will be displayed below. Here, in order to

avoid a cumbersome notation, we use the same symbol for the
transition operator T

↔
in its space and momentum representa-

tions, the difference between them will be indicated only
through its arguments. The latter plane-wave expansion
changes discontinuously at some plane passing through the
observation point. The orientation in space of such plane de-
pends on how we choose the plane wave expansion. It is con-
venient to divide the integral over d3rn throughout the volume
V in the right-hand side of Eq. (16) in four parts as indicated in
Fig. 2b. In each region shown in Fig, 2b we should use a dif-
ferent plane wave expansion of G

↔
�r; r0� such that when per-

forming the integrals in Eq. (16) in any of these regions the
discontinuity in the plane wave expansion does not contri-
bute. The reason behind choosing the particular division
shown in Fig. 2 is that we are assuming that the wave incident
to the monolayer travels in the zy-plane (kix � 0). In the case
of a monolayer of infinite extent the average scattered waves
turn out (as one would expect) to be on the same plane, and
thus, the corresponding wave vectors have their x-component
also equal to zero. Therefore, the integrals leading to the main

yn

znxn 2b

2b

jr

(b)
Upper region (U)

Bottom region (B)

Right semi-strip

(Rss)

Left semi-strip 

(Lss) 

∆z 

jr

nr

x 

y 

z 
∆z → 0 

V 

(a)

Fig. 2. (Color online) (a) Illustration of the averaging procedure
keeping the jth particle fixed at rj and moving the nth particle across
the plane of the monolayer, except where jrj − rnj < 2a. (b) Different
sections of the monolayer plane in which we divide the integral over
d3rn around rj .
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contributions to the induced fields simplify with the division
shown in Fig. 2.

Thus, let us split the integral over d3rn in two contributions,
one from the bottom (B) region of the monolayer plane de-
fined by all points rn for which yj − yn > 2a and the other
one from the top (T) region formed by all points rn with yj −

yn < 2a (see Fig. 2). These contributions correspond to the
integrals

Z
B

d3rn�·� →
Z Δz

0

Z
yj−2a

−L

Z
L

−L

dxndyndzn�·� andZ
T

d3rn�·� →
Z Δz

0

Z
L

yj�2a

Z
L

−L

dxndyndzn�·�;

where we will take the limits Δz → 0 and L → ∞ when con-
venient. The contributions from the remaining side strips,
the right and left semistrips shown in Fig. 2 where jyj − ynj <
2a can be neglected. This is justified in Appendix A.

To calculate the contributions from the bottom and top
regions we should use the following plane wave expansion
of the dyadic Green's’s function:

G
↔

��r; r0� � −âyâyδ�r − r0� � i

2

ZZ
dksxdksz
�2π�2

1
ksy

�I − k̂s�k̂
s
��

· exp�iks� · �r − r0��; (21)

where ks� � ksxâx � ksyây � kszâz, ksy �
��������������������������������������
k2m − �ksx�2 − �ksz�2

p
(this is the positive root) and k̂s� � ks�∕jks�j is a unit vector
and the sign “�” is y > y0, whereas the “−” sign is for
y > y0. (See [36], pages 381–384.) We recall that âx, ây, and
âz are unit vectors along the Cartesian x, y, andz axes, and
the term with the delta function in the right-hand side of
Eq. (21) will take care of the contributions of the singularities
of G

↔
� in the source region while performing the integral

in Eq. (16).
Using Eexc

n �r; rn� � Eexc exp�ikD · rn� exp�ikexc · r�̂eexc and
Eqs. (20) and (21) in the right-hand side of Eq. (16) yields

Eexc
j �r; rj� � Ei�r� � iρ

2
Eexc

Z
d3r0

ZZ
dksxdksz
�2π�2

1
ksy

� I
↔
− k̂s�k̂

s
��

· exp�iks� · �r − r0��
Z

d3r00
Z

d3p0

�2π�3
Z

d3p00

�2π�3

×
Z

d3rng�jrj − rnj� exp�ip0 · �r0 − rn��T
↔
�p0; p00�

· exp�−ip00 · �r00 − rn�� exp�ikD · rn�
× exp�ikexc · r00 �̂eexc; (22)

where the choice of ks� or ks− will be determined when per-
forming the integrals. Note that the contribution to
Eexc
j �r; rj� of the term with a Dirac’s delta function in the ex-

pansion ofG�r; r0�, is obtained by substituting Eq. (21) directly
into Eq. (16). If one uses σ↔ � �1∕iωμ0�T

↔
and Eq. (2a), this

term can be written as −iωμ0ρâyây ·
R
d3rn g�rn; rj�

J�n�ind�r − rn�, where J�n�ind�r − rn� is the current density induced
at r by a sphere whose center is located at rn and it is different
from zero only for jr − rnj < a. Since the relevant values of r in
Eexc
j �r; rj� are restricted to jr − rjj < a, but rn cannot get close

to rj , for jrn − rjj < 2a, due to the presence of g�rn; rj�, this
term will vanish.

In Eq. (22) when we integrate over d3rn throughout the bot-
tom region of the monolayer plane we must choose the “�”

sign in ks� whereas when integrating over the top region we
must choose the − sign. We can perform the integrals over
d3r00 and d3r0 which give the factors �2π�3δ�p00 − kexc� and
�2π�3δ�p0 − ks��, respectively. To perform the integral over
d3r0 we choose either ks� or ks− (in the bottom or top integra-
tion regions, respectively), which assumes that y − y0 > 0 or
y − y0 < 0. This is again possible because the transition opera-
tor is zero whenever jr0 − rnj > a or jr00 − rnj > a and for any
two vectors rj and rn that satisfy yj − yn > 2a or yj − yn < 2a
we have that y − y0 > 0 or y − y0 < 0, respectively, when the
integrand is different from zero.

After performing the integrals over d3r00 and d3r0, the inte-
grals over d3p0 and d3p00 are trivial. We get

Eexc
j �r; rj� � Ei�r� � iρ

2
Eexc

ZZ
dksxdksz
�2π�2

1
ksy

� I
↔
− k̂s�k̂

s
��

· exp�iks� · r�

×
Z

d3rng�jrj − rnj� exp�−iks� · rn�T
↔
�ks�; kexc�

· exp�ikijj · rn�̂eexc. (23)

Now we can perform the integrals over d3rn on the bottom
and top regions (B and T). In either half-plane the integral
over dzn gives a factor Δz in the limit Δz → 0. The integral
over dxn, in the limit L → ∞, gives the factor �2π�δ�ksx − kix�.
But, for simplicity, we have chosen our coordinate axes such
that kix � 0, thus the integral over dxn gives �2π�δ�ksx�. Be-
cause of the latter delta function, the integral over dksx is
trivial.

We will now refer to the second term in the right-hand side
of Eq. (23) as the “induced field exciting the jth particle” and
denote it as Eind

j �r�. Since, as already said, we neglect the con-
tributions from the integration d3rn over the side semistrips
depicted in Fig. 2 (see Appendix A), we write Eind

j �r� as
the sum of only two terms, namely the integral over d3rn over
the bottom region, Eind

B �r; rj�, and that, over the top region,
Eind
T �r; rj�. Neglecting the contributions from the mentioned

side-strips, Eind
j �r� is well defined for yj − 2a < y < yj � 2a

and we then have

Eind
j �r; rj� � Eind

B �r; rj� � Eind
T �r; rj�; (24)

where

Eind
B �r; rj� �

iρs
2

Eexc

Z
dksz
2π

1
ksy

� I
↔
− k̂s�k̂

s
�� · T

↔
�ks�; kexc�

· êexc exp�iks� · r�
Z

yj−2a

−L

dyn exp�i�kiy − ksy�yn�;
(25)

Eind
T �r; rj� �

iρs
2

Eexc

Z
dksz
2π

1
ksy

� I
↔
− k̂s−k̂

s
−� · T

↔
�ks−;kexc�

· êexc exp�iks− · r�
Z

L

yj�2a
dyn exp�i�kiy � ksy�yn�;

(26)
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where now ksy �
����������������������
k2m − �ksz�2

p
and we used ρs � ρΔz �

NΔz∕V � N∕A. Recall that N is the number of particles in
the system, V the volume of space where their centers lie,
and V � AΔz where the area A � 4L2 is the area of the
monolayer.

Performing the integral over dyn yields

Eind
B �r; rj� �

iρs
2

Eexc

Z
dksz
2π

�i4π∕km�S�ks�;kexc�
ksy

×
exp�i�kiy − ksy��yj − 2a�� − exp�−i�kiy − ksy�L�

i�kiy − ksy�
× exp�iks� · r�; (27)

and

Eind
T �r; rj� �

iρs
2

Eexc

Z
dksz
2π

�i4π∕km�S�ks−; kexc�
ksy

×
exp�i�kiy � ksy�L� − exp�i�kiy � ksy��yj � 2a��

i�kiy � ksy�
× exp�iks− · r�; (28)

where for economy and later convenience we defined

S�q;p�≡ km

i4π � I
↔
− q̂ q̂� · T

↔
�q; p� · êp. (29)

In Appendix B we show that Eind
B is given by

Eind
B �r; rj� � −

1
2
αEexc�S�ki;kexc� exp�iki · r�

� S�kr; kexc� exp�ikr · r�� − ρsηC3
B �r� − ρsη−C3

B �r�;
(30)

where α � 2πρs∕�kmkiz�, kr � kiyây − kizâz is the wave vector of
a specularly reflected wave from the plane of the monolayer,
and the fields ρsηC3

B �r� and ρsη−C3
B �r� involve the integral of only

evanescent fields. The superscripts C3 and −C3 denote inte-
gration contours in the complex plane. We also show in
Appendix B that the average induced field coming from the
top region of the monolayer yields two terms which involve
the integrals of only evanescent fields and are proportional
to the surface density of particles. That is,

Eind
T �r; rj� � −ρsηC3

T �r� − ρsη−C3
T �r�; (31)

where the terms ρsηC3
T �r� and ρsη−C3

T �r� are given in
Appendix B. Therefore, the induced field exciting the jth
particle arising from the exciting plane wave is given by

Eind
j �r; rj� � −

α
2
Eexc�S�ki; kexc� exp�ki · r�

� S�kr; kexc� exp�ikr · r�� − ρsηevanes�r�; (32)

where ηevan�r� � ηC3
B �r� � η−C3

B �r� � ηC3
T �r� � η−C3

T �r� is the sum
of all the terms involving integrals of only evanescent fields.

Now, according to our Ansatz given in Eq. (18b), the in-
duced field exciting the jth particle is obtained by adding
the fields obtained above upon substitution of Eexc � E1,
kexc � k1, êexc � ê1 and Eexc � E2, kexc � k2, êexc � ê2 in
Eq. (32). We get

Eind
j �r; rj� � −

α
2
E1�S�ki;k1� exp�ki · r� � S�kr; k1� exp�ikr · r��

−
α
2
E2�S�ki; k2� exp�ki · r� � S�kr;k2� exp�ikr · r��

− ρsη�1�evanes�r� − ρsη�2�evanes�r�; (33)

where we added the superscripts (1) and (2) to the contribu-
tions coming from the evanescent fields.

C. Consistency Equations
If we use Eq. (18b) to express the exciting field for the jth
particle in the left hand side of Eq. (16) and replace the second
term in the right-hand side of this same equation with the re-
sult in Eq. (33), we obtain a set of consistency equations for
the unknown parameters in the assumed exciting field: E1, E2,
k1, ê1, k2, and ê2. Note, however, that the factor α �
2πρs∕�kmkiz� � 2πρs∕�k2m cos θi� appearing in the induced
fields diverges as the angle of incidence increases and ap-
proaches π∕2. Thus, even for small ρs the factor α may not
be small. Thus it is not possible to seek for a solution to
the consistency equation in the form of a power series in
ρs that would remain valid at all angles of incidence.

We can obtain a closed consistency equation which we can
solve exactly for E1, E2, k1, ê1, k2, and ê2, if we drop the eva-
nescent field terms, ρsη�1�evanes�r� and ρsη�2�evanes�r� given in
Appendix B and appearing in the right-hand side of Eq. (33).
We can justify this approximation by noting that, if we iterate
the result by adding these terms to our Ansatz and repeat the
whole procedure, we would arrive to the same equation but
with the terms, ρsη�1�evanes�r� and ρsη�2�evanes�r�, replaced by new
ones. These new terms would be of second-order in the sur-
face density of particles and thus, they will presumably be
smaller. Also, iterating the Kernel of the integrals defining
η�1�evanes�r� and η�2�evanes�r� in Appendix B, through all the proce-
dure delineated in the same Appendix B, it is not difficult to
see that these new terms would also consist only of evanes-
cent fields.

Then, neglecting the evanescent-field terms in Eq. (33) and
substituting the remaining terms for the second term in the
right-hand side of Eq. (16) and using Eq. (18b) on the left-hand
side of this same equation, yields the desired consistency
equation. Equating terms with the same dependence on r in
both sides of the obtained equation requires k1 � ki, ê1 �
êi and k2 � kr , ê2 � êr , where êr is the polarization vector
of the specularly reflected wave from the plane of the mono-
layer (which depends on êi as indicated below). Then, the ex-
citing field at any particle is of the form

Eexc
p �r; rp� � E1 exp�iki · r�ei � E2 exp�ikr · r�er; (34)

and we are left with two consistency equations for the remain-
ing two unknowns E1 and E2,

E1êi � Eiêi −
α
2
E1S�ki; ki� −

α
2
E2S�ki;kr�; (35a)

and

E2êr � −
α
2
E1S�kr;ki� −

α
2
E2S�kr; kr�. (35b)

where S�kr;ki� and S�kr; kr� are given by Eq. (29). To solve for
E1 and E2 we take the scalar product of both sides of the first
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and second equations with êi and êr respectively. Solving the
obtained algebraic equations and noting that êi · S�ki; ki� �
êr · S�kr; kr� and êr · S�kr; ki� � êi · S�ki; kr� yields

E1 �
Ei

�
1� α

2 êr · S�kr; kr�
�

1� α̂ei · S�ki;ki� � α2
4 �̂ei · S�ki;ki��2 − α2

4 �̂er · S�kr;ki��2
;

(36)

and

E2 �
−Ei

α
2 êr · S�kr;ki�

1� α̂ei · S�ki;ki� � α2
4 �̂ei · S�ki; ki��2 − α2

4 �̂ei · S�kr;ki��2
:

(37)

We can write the coefficient α � 2πρs∕�kmkiz� as

α � 2Θ
x2m cos θi

; (38)

where Θ is the surface-coverage-fraction of the monolayer
and xm � kma is the so called size parameter of the
particle. To obtain the latter relation we used ρs � N∕A �
Nπa2∕�Aπa2� � Θ∕�πa2�.

D. Average Reflected and Transmitted Fields
Here we use Eq. (10), with the exciting field given in Eq. (34),
to calculate the average reflected (z < a) and transmitted
(z > a) fields. In this case it is convenient to expand the dya-
dic Green's’s function in plane waves traveling along the�z or
−z depending on whether we are calculating the transmitted
or reflected average wave, respectively. That is, we use

G
↔

��r; r0� � −âzâzδ�r − r0� � i

2

ZZ
dksxdksy
�2π�2

1
ksz

� I
↔
− k̂s�k̂

s
��

· exp�iks� · �r − r0��; (39)

where ks� � ksxâx � ksyây � kszâz, ksz �
��������������������������������������
k2m − �ksx�2 − �ksy�2

q
and

k̂s� � ks�∕jks�j is a unit vector (e.g., see 36], pages 381–284).
We should use the upper sign “(�)” for the transmitted aver-
age field when z > a and the lower one “(−)” for the reflected
average wave whenz < a. In Appendix C we show that the
transmitted field for z > a is given by

Et�r� � �Eiei − αE1S�ki; ki� − αE2S�ki;kr�� exp�iki · r�; (40)

whereas the reflected field for z < a is given by

Er�r� � −α�E1S�kr; ki� � E2S�kr;kr�� exp�ikr · r�. (41)

We define the coherent transmission (tcoh) and reflection
(rcoh) coefficients such that Et � tcohEi and Er � rcohEi.
Using these latter expressions and Eqs. (36) and (37) in
Eqs. (40) and (41) yield the desired expressions for tcoh and
rcoh. The results are expressed in a more appealing and trans-
parent form by using the following identities

S�ki;ki� � km

4πi � I
↔
− k̂ik̂i� · T

↔
�ki;ki� · êi � S�0�̂ei; (43a)

S�kr;kr� � km

4πi � I
↔
− k̂r k̂r� · T

↔
�kr; kr� · êr � S�0�̂er; (43b)

S�kr;ki� � km

4πi � I
↔
− k̂r k̂r� · T

↔
�kr;ki� · êi � Sj�π − 2θi �̂er; (43c)

S�ki;kr� � km

4πi � I
↔
− k̂ik̂i� · T

↔
�ki;kr� · êr � Sj�π − 2θi�̂ei. (43d)

where êr is the polarization vector of a specularly reflected
wave, S�0� is the forward scattering amplitude of an isolated
sphere (embedded in the matrix medium), the subindex j

takes the value 1 for a TE incident polarized wave (s polariza-
tion) and 2 for a TM polarized wave (p polarization) and S1

and S2 are the diagonal elements of the amplitude scattering
matrix of an isolated sphere (also embedded in the matrix
medium) as defined by Bohren and Huffman in [37]. The first
and third of these identities were previously established in
[18,19] and the other two are demonstrated in the same
way. It is immediate to see that the polarization vectors êi
and êr in the present geometry are given by êi � âx and êr �
âx for a TE polarized incident wave and by êi �
cos θiây − sin θiâz and êr � cos θiây � sin θiâz for a TM
polarized incident wave.

With the above identities the coherent reflection and trans-
mission coefficients are given by

rcoh � −αSj�π − 2θi�
1� αS�0� � α2

4 �S2�0� − S2
j �π − 2θi��

; (44a)

and

tcoh �
�

1 − α2
4 �S2�0� − S2

j �π − 2θi��
1� αS�0� � α2

4 �S2�0� − S2
j �π − 2θi��

�
; (44b)

where, as already mentioned, j � 1 or 2 for a TE or a TM
polarized incident wave, respectively. If we drop the second-
order terms in α, we recover the corresponding expressions
obtained previously in [29], that is,

tcoh � 1
1� αS�0� ; (45a)

and

rcoh � αSj�π − 2θi�
1� αS�0� . (45b)

Let us recall that in [29] the coefficients given in Eqs. (45a) and
45b were obtained heuristically by simply assuming that the
exciting field is equal to the transmitted field. From the multi-
ple-scattering treatment presented here we can see now that
the exciting field is actually composed by a transmitted com-
ponent and a reflected one.

It is not difficult to see that, if we were only to take the SS,
the transmission and reflection coefficients of the monolayer
would be given by, tsscoh � 1 − αS�0� and rsscoh � αSj�π − 2θi�.
Clearly in these expressions, the magnitude of the
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single-scattering coefficients grow without bound whenever
the angle of incidence approaches grazing, because the ex-
pression for α has the cosine of the angle of incidence in
the denominator [see Eq. (38)]. Nevertheless, for sufficiently
small angles of incidence and sufficiently small surface cover-
age the SS can be accurate and we will use it below in the
numerical examples for comparison purposes.

E. Accuracy of the Model Predictions
The results in Eqs. (44a) and (44b) were obtained assuming a
hard-sphere pair-correlation function and neglecting the con-
tributions from the side strips on the integrals over d3rn. If we
were willing and proficient enough to improve any of these
approximations other terms of second-order and higher on
the surface density of particles, ρs, will be added on the nu-
merator and on the denominator of the expressions in
Eqs. (44a) and (44b). Therefore, whenever the contribution of
the second-order terms in ρs appearing in Eqs. (44a) and (44b)
is small, the predictions of the models should be accurate.
This means that when the coherent reflection and transmis-
sion coefficients predicted by Eqs. (44a) and (44b) and by
(45a) and (45b) are numerically close to each other, the
HM and multiple-scattering models (MSM) should both be ac-
curate. When the two approximations differ, we should deem
the predictions from Eqs. (44a) and (44b) better, but we
should start being cautious about it accuracy. As it turns
out, this criterion gives an ample range in the parameters of
a monolayer where we can use confidently the present model.
However, it will be necessary to compare with numerical so-
lutions to the problem and experimental data to delineate the
regions of validity of the MSM for monolayers with higher sur-
face coverage.

4. MONOLAYER SUPPORTED BY A FLAT
INTERFACE
If we now assume that the monolayer is supported by a flat
interface, we must take into account the multiple reflections
of the average wave between the monolayer and the flat inter-
face. Let us assume that light is incident at an angle θ1 to a flat
interface between medium 1 and 2 with refractive indices n1

and n2, as shown in Fig. 3. We can construct the coherent re-
flection coefficient by replacing the monolayer with an effec-
tive infinitely thin layer with a reflection and transmission
coefficient given by Eqs. (44a) and (44b), respectively. If
the particles are adsorbed on the interface, this effective, in-
finitely thin layer is parallel to the interface and one particles
radius apart. Now, if the particles sit on the interface from the
incidence side, we have that the matrix medium for the mono-
layer is medium 1 and nm � n1. If the particles are adsorbed to
the interface from the external medium, the matrix is medium
2 and nm � n2. The angle of incidence of light to the mono-
layer is θi � θ1 when the particles are on the side of medium 1.
However, when the particles are below the interface, that is,
immersed in medium 2, light gets refracted before reaching
the monolayer and thus, the angle of incidence to the particles
is given by Snell’s law as θ2 � sin−1��n1∕n2� sin θ1�.

In the case when the particles sit on the interface on the
side of the incidence medium, the multiple reflections of
the coherent wave between the monolayer plane and the inter-
face is given by

r � rcoh�θ1� � r12�θ1�t2coh�θ1� exp�β1�
� rcoh�θ1�r212�θ1�t2coh�θ1� exp�2β1�
� r2coh�θ1�r312�θ1�t2coh�θ1� exp�3β1� �…;

where β1 � 2ik0an1 cos θ1 and r12 is the Fresnel reflection
coefficient of the interface between refractive indices, n1

and n2 evaluated at an angle of incidence θ1. This sum is sim-
plified to

r�θ1� � rcoh�θ1� �
r12�θ1�t2coh�θ1� exp�β1�

1 − r12�θ1�rcoh�θ1� exp�β1�
; (47)

where rcoh and tcoh are the coherent reflection and transmis-
sion coefficients of the free-standing monolayer with particles
embedded in medium 1.

Now, when the particles are behind the interface inside
medium 2, we get

r � r12�θ1�
� t12�θ1�t21�θ2�rcoh�θ2� exp�β2��1
� rcoh�θ2�r21�θ2� exp�β2� � �rcoh�θ2�r21�θ2��2 exp�2β2�
�…�

where β2 � 2ik0an2 cos θ2. Noting that, t12�θ1� � 1� r12�θ1�,
t21�θ2� � 1� r21�θ2�, and r21�θ2� � −r12�θ1� we can simplify
the sum as

r�θ1� �
r12�θ1� � rcoh�θ2� exp�β2�
1� r12�θ1�rcoh�θ2� exp�β2�

; (48)

where rcoh is the coherent reflection coefficients of the free-
standing monolayer with particles embedded in medium 2 and
as already said, θ2 � sin−1��n1∕n2� sin θ1�.

θ1

θ1
n1 

n2 

n1 

n2 

a 

a 

(b) 

(a) 

θ2

Fig. 3. (Color online) Illustration of the monolayer supported by a
flat interface. (a) The particles are sitting on the interface and em-
bedded in medium 1 and (b) the particles are below the interface
in medium 2. Note that, in (b) the angle of incidence to the monolayer
plane is θ2 and is related to θ1 by Snell’s law between medium 1 and
medium 2. In both cases the plane of the monolayer is indicated by the
dashed line parallel to the interface and separated by one particle’s
radius (a).
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5. NUMERICAL EXAMPLES
Let us now evaluate the reflection and transmission coeffi-
cients in Eqs. (44a) and (44b) for a few examples, and refer
to these coefficients as the ones of the MSM. For comparison
purposes we will refer to the coefficients in Eqs. (45a) and
(45b) as the ones of the HM and to tsscoh � 1 − αS�0� and rsscoh �
αSj�π − 2θi� as the ones where the SS has been used. Introdu-
cing now these coefficients in either Eq. (47) or (48), gives the
MSM, HM, or SS reflection coefficients of a monolayer sup-
ported by a flat interface.

In Figs. 4–6 we plot the coherent reflectance and transmit-
tance of a linearly polarized incident plane wave from a free-
standing monolayer of particles immersed in air (nm � 1.0)
varying one of the optical parameter’s of the particles. The
surface coverage is assumed to be moderately small.

In Fig. 4 we assume relatively large particles of size para-
meter 10 and vary the real part of the particles’ refractive in-
dex assuming the imaginary part is zero. Note that the
coherent reflectance in this example is very small and does
not compensate the large drop in coherent transmittance as
the refractive index (assumed real) increases. In this example
the energy flux missing in the coherently reflected transmitted
fields is all transformed to energy flux in the diffuse field since
in this example the particles do not absorb light.

In Fig. 5 we assume the same large particles of size para-
meter 10 but with a complex refractive index with its real
part fixed at 1.3 and we vary its imaginary part from 0 to
1 and thus adding optical absorption to the particles. The
first points in these graphs correspond to those for a refrac-
tive index of 1.3 in Fig. 4. We can see in Fig. 5 that the co-
herent transmittance predicted by the three models is rather
insensitive (in relative terms) to Im�np�, whereas the coher-
ent reflectance does change appreciably in relative terms as
Im�np� increases. From only the coherent transmittance and
reflectance calculated here we cannot tell how much light is
missing from the coherent fields goes into the diffuse field
and how much gets actually absorbed by the particles. It
would be necessary to calculate the diffusely reflected
and transmitted fields.

In Fig. 6 we consider highly absorbing particles and vary
their radius from infinitesimally small to relatively large par-
ticles of size parameter about 2.5. We can appreciate in these
figures that the reflectance predicted by the MSM and the HM
remain close to each other, whereas the transmittance differs
noticeably. In all cases shown in the figure, the SS deviates
strongly either from the MSM or the HM or from both. In
Fig. 5b and 6b the reflectance or transmittance calculated
by the SS reaches values larger than 1, which is of course,
a nonphysical result.

In Figs. 7 and 8 we plot a spectrum of the coherent reflec-
tance of a free-standing and a supported monolayer, respec-
tively, of gold particles of 50 nm radius and a surface-coverage
of 0.25. We assume normally incident and obliquely incident
light at 60° for both polarizations TE and TM. The peak in re-
flectance seen around a wavelength of 500 nm is due to the so
called surface plasmon resonance of the particles. For ease of
comparison of both figures, the dielectric supporting the
monolayer assumed in Fig. 8 was supposed to be dispersion-
less with a refractive index of 1.5 for all wavelengths. It is in-
teresting to note that the effect of the substrate is to lower the
reflectance of the monolayer of gold particles. The height of

the peak in absorption is clearly smaller when the monolayer
is supported than if it is free standing. In these plots the HM
and the MSM are close to each other throughout the range in
wavelengths shown in the plots, whereas the SS approxima-
tion clearly overestimates the reflectance from the monolayer
throughout the visible range and part of the near infrared por-
tions of the spectrum.

In Fig. 9 we plot the spectrum of the coherent reflectance
from a monolayer of silver particles sitting on top of silver
with a surface-coverage of 0.25. We assumed light is incident
at 30° and plot the results for both polarizations TE and TM. In
this example the single SS approximation fails drastically pre-
dicting a reflectance larger than 1 for most wavelengths in the
graph. We can see the HM and the MSM results differ from
each other, more for TM than for TE polarized light. In
Fig. 8(a) we can appreciate that the HM reaches values slightly
above 1 at the largest wavelengths shown in the graph
whereas the MSM remains below 1. It is interesting to see that
the monolayer of silver particles strongly reduces the reflec-
tivity of the silver interface in the blue portion of the spectrum
but it reduces it only slightly in the deep red and near infrared
portions of the spectrum.

For both, gold and silver particles, assumed in Figs. 6,7, and
8, respectively, we assumed the refractive index of the parti-
cles equal to that of the bulk metal.
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Fig. 4. (Color online) Plot of the coherent (a) transmittance and
(b) reflectance of a free-standing monolayer of particles of size
parameter xm � 10 immersed on air (nm � 1.0) as a function of
the particle refractive index (assumed real). The angle of incidence
is θi � 45°, surface-coverage-fraction is Θ � 0.3, and the polarization
of light is assumed TE. The solid line (black on line) is for the multiple-
scattering model (MSM), the dashed line (red on line) is for the heur-
istic model (HM), and the short dash (navy on line) is for the
single-scattering model (SS).
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Finally, in Fig. 10 we plot the reflectance of TM polarized
light versus the angle of incidence from a glass-water interface
with a monolayer of Polystyrene particles (np � 1.59) ad-
sorbed from the water side and light incident from the glass
side (internal reflection). Relatively large particles are used
with radii of 100, 200, and 300 nm. The wavelength of light
in vacuum used in the calculations is 635 nm. In this case,
in the absence of the monolayer there is a critical angle near

62° and behind it we have total internal reflection. Clearly the
presence of a monolayer of particles adsorbed on the surface
frustrates the total internal reflection through scattering and
absorption of the coherent wave. We can see in Fig. 10(a) that
the MSM and HM remain very close to each other for all angles
of incidence for the smaller particles, but important differ-
ences are seen in Figs. 10(b) and 10(c) for particles of 200
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Fig. 5. (Color online) Plot of the coherent (a) transmittance and
(b) reflectance of a free-standing monolayer of particles of size para-
meter xm � 10 and a refractive index with its real part, Re(np), equal
to 1.3, immersed on air (nm � 1.0) as a function of the imaginary part
of the particle refractive index. The angle of incidence is θi � 45°,
surface-coverage-fraction is Θ � 0.3, and the polarization of light is
assumed TE. The solid line (black on line) is for the multiple-
scattering model (MSM), the dashed line (red on line) is for the
heuristic model (HM) and the short dash (navy on line) is for the
single-scattering model (SS).
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Fig. 6. (Color online) Plot of the coherent reflectance and transmit-
tance of a free-standing monolayer of particles in air (nm � 1.0) as a
function of the particle radius at two different angles of incidence
(a) θi � 30° and (b) θi � 60° at a fixed surface-coverage-fraction
Θ � 0.3. The refractive index of the particles is np � 2� 4i, the
wavelength of radiation is assumed to be λ � 500 nm and the
polarization of light is TE. The solid line (black on line) is for
the multiple-scattering model (MSM), the dashed line (red on line)
is for the heuristic model (HM) and the short dash (navy on line)
is for the single-scattering model (SS).
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Fig. 7. (Color online) Calculated spectra of the coherent reflectance of a free-standing monolayer of gold particles in air. (a) For and angle of
incidence of θi � 0°, (b) For an angle of incidence of θi � 60° and TE polarization, (c) For an angle of incidence of θi � 0° and TM polarization. The
particle radius is a � 50 nm and the surface-coverage fraction isΘ � 0.25. The solid line (black on line) is for the multiple-scattering model (MSM),
the dashed line (red on line) is for the heuristic model (HM) and the short dash (navy on line) is for the single-scattering model (SS).
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and 300 nm radius for angles of incidence larger than the cri-
tical angle. In this example the wave incident to the monolayer
is an evanescent wave decaying along the z-axis when the an-
gle of incidence is larger than the critical angle for the glass-
water interface. This evanescent wave is actually an incident
plane wave with a complex angle of incidence. There is no

additional difficulty in evaluating the amplitude scattering
functions S1 and S2 with a complex angle of incidence using
the standard algorithms from Mie theory [37].

From the examples in Figs. 4–10, we can get a rough idea of
the validity of the MSM and HM. We can see that there is wide
range of particle radius and refractive indices for which the
MSM can be used with confidence.

6. FINAL REMARKS
Upon using the MSM it may help to note that the second-order
term �α2∕4��S2�0� − S2

j �π − 2θi�� that appears in Eqs. (44a) and
(44b), with j either 1 or 2, does not diverge as the angle of
incidence approaches grazing. This can be readily seen by
expanding Sj�π − 2θi� in powers of the difference between
the angle of incidence and π∕2. We have, Sj�π − 2θi� ≈
Sj�0� � 1

2 �S00
j �0��4�δθ�2 � O�δθ�3, where δθ ≡ π∕2 − θi and

S00
j �0� is the second derivative of Sj with respect to its argu-

ment evaluated in the forward direction. The first-order term
is zero since the scattering amplitude is maximum in the for-
ward direction and thus, S0

j�0� � 0. On the other hand the
parameter α � 2Θ∕x2m cos�π∕2 − δθ� ≈ 2Θ∕�x2mδθ�. Thus, in
the limit of grazing incidence we have

α2
4
�S2�0� − S2

j �π − 2θi�� → −4
Θ2

x4m
S�0�S00

j �0�; (49)

which is a finite number since S00
j �0� is finite.

An interesting limit, for future reference, is the small par-
ticle limit of the coherent reflection and transmission coeffi-
cients obtained above. These are readily obtained using the
following results given in [37], S1�π − 2θi� → S�0� → −ix3mχ
and S2�π − 2θi� → −ix3mχ cos�π − 2θi�, where χ ≡ �n2

p − n2
m�∕

�n2
p � 2n2

m�. Then, for TE polarization in the limit of small par-
ticles the reflection and transmission coefficients tend, for TE
polarization to

rTEcoh →

iβχ
1 − iβχ ; tTEcoh →

1
1 − iβχ ; (50a)

and for TM polarization to

500 1000 1500 2000 2500
0.00

0.05

0.10

0.15

0.20

0.25

0.30

C
oh

er
en

t R
ef

le
ct

an
ce

Wavelength (nm)

(a)

R-SS

R-MSM and R-HM

θ
i
 = 0o

Θ = 0.25
n

s
 = 1.5

R-substrate

500 1000 1500 2000 2500
0.0

0.2

0.4

0.6

0.8

1.0

R-substrate

(b)

TE Polarization

θ
i
 = 60o

Θ = 0.25
n

s
 = 1.5

R-MSM and R-HM

R-SS

Wavelength (nm)

C
oh

er
en

t R
ef

le
ct

an
ce

500 1000 1500 2000 2500
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

R-substrate

R-HM

R-MSM

R-SS

(c)

TM Polarization

θ
i
 = 60o

Θ = 0.25
n

s
 = 1.5

Wavelength (nm)

C
oh

er
en

t R
ef

le
ct

an
ce

Fig. 8. (Color online) Calculated spectra of the coherent reflectance of a monolayer of gold particles sitting on top of an air-glass interface
(nm � 1.0 and ns � 1.5) (a) for an angle of incidence of θi � 0°, (b) for an angle of incidence of θi � 60° and TE polarization, (c) for an angle
of incidence of θi � 60° and TM polarization. The particle radius is a � 50 nm and the surface-coverage fraction isΘ � 0.25. The reflectance of the
substrate alone (without the monolayer) is the dotted line (brown on line), the solid line (black on line) is for the multiple-scattering model (MSM),
the dashed line (red on line) is for the heuristic model (HM) and the short dash (navy on line) is for the single-scattering model (SS).
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Fig. 9. (Color online) Calculated spectra of the coherent reflectance
of a monolayer of silver particles sitting on top of silver half-space
(nm � 1.0 and ns�ω� is that of silver). The particle radius is a �
50 nm, the angle of incidence is θi � 30°, the surface-coverage-
fraction Θ � 0.25 and the polarization is (a) TE and (b) TM. The
reflectance of the substrate alone (without the monolayer) is the
dotted line (brown on line), the solid line (black on line) is for
the multiple-scattering model (MSM), the dashed line (red on line)
is for the heuristic model (HM), and the short dash (navy on line)
is for the single-scattering model (SS).
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rTMcoh →

iβχ cos�π − 2θi�
1 − iβχ − 1

4 β2χ2 sin2�π − 2θi�
;

tTMcoh →

1� 1
4 β2χ2 sin2�π − 2θi�

1 − iβχ − 1
4 β2χ2 sin2�π − 2θi�

; (50b)

where β � 2Θxm∕ cos θi. The small particle limit for the HM is
obtained from the latter expressions dropping the second-
order terms βχ in the numerator or denominator. Note that
the second-order term appearing in Eqs. (50a) and (50b),
β2χ2 sin2�π − 2θi� give a finite contribution in the limit
θi → π∕2, as previously said. For the SS we expand the de-
nominators in powers of βχ and keep terms to first-order only.
It is interesting to point out a fundamental flaw of the SS: The
transmission coefficients for both polarizations in the small

particle limit is tsscoh � 1� iβχ and thus, the transmittance
in this limit jtsscohj2 � 1� β2jχj2 − 2βIm�χ�, which give values
larger than 1 for any angle of incidence if χ is real or if it
has a small imaginary part such that Im�χ� < 1

2 βjχj2. This is
true even for very low surface coverage. Actually this unphy-
sical feature of the SS was clearly pointed out before in [26]. It
can be appreciated here in Fig. 6(b). This flaw is not present
neither in the HM nor the MSM. It is clear that being jtsscohj2 a
second-order expression in βχ when the particles have a real
refractive index, this flaw comes from neglecting all second-
order terms.

7. SUMMARY AND CONCLUSIONS
Using a multiple-scattering formalism we derived relatively
simple closed-form expressions for the coherent reflection
and transmission coefficients of light from a random mono-
layer of particles of arbitrary size. We considered only sphe-
rical particles made of an isotropic material embedded in a
transparent isotropic and homogeneous medium. The expres-
sions are derived within the so called QCA which provides us
with an integral equation for the electric field exciting the par-
ticles. We assumed the two-particle correlation function is a
simple correlation hole, which is a valid approximation only
for moderately small surface-coverage fractions. We assumed
an Ansatz for the exciting fields in the form of an effective
plane wave traveling in the direction of incidence plus another
effective plane wave traveling in the direction of coherent re-
flection (the specular direction). Introducing the Ansatz in the
QCA equation for the average exciting electric fields, perform-
ing the required integrals and keeping only the leading terms
that produce effective plane waves traveling in the incidence
and specular directions, yield two consistency equations from
which the complex amplitudes and polarization of the effec-
tive plane-waves contained in the Ansatz are determined.
Once having the desired approximation to the effective excit-
ing fields, we calculate the average of the scattered fields at
either side of the monolayer and determine the reflection and
transmission coefficients for the average or coherent wave.

The latter approximations limit the validity of the model to
moderately small surface-coverage fractions, allowing, how-
ever, for any particle size and angle of incidence. By dropping
second-order terms in the numerator and in the denominator
of the derived expressions for rcoh and tcoh we obtain the ex-
pressions derived in our previous model which we refer to as
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Fig. 10. (Color online) Plot of the coherent reflectance of a monolayer of particles adsorbed below a glass–water interface (from the water’s side)
(n1 � 1.5, n2 � 1.33, nm � 1.33) as a function of the angle of incidence. The particle refractive index is np � 1.59 (e.g, polystyrene) and the particle
radius is (a) a � 100 nm, (b) a � 200 nm, and (c) a � 300 nm. The wavelength in vacuum of the light is λ � 635 nm. The polarization of light is TM.
The reflectance of the substrate alone (without the monolayer) is the dotted line (brown on line), the solid line (black on line) is for the multiple-
scattering model (MSM), the dashed line (red on line) is for the heuristic model (HM), and the short dash (navy on line) is for the single-scattering
model (SS).
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Fig. 11. (a) First half and (b) second half of the path of integration in
Eq. (B1) in the complex u— plane. The open circle indicates schema-
tically where u � km and the function ksz � �k2m − u2�1∕2 has a branch
point.
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Fig. 12. Closed contours used to evaluate the principal value of the
integrals on (a) Γ1 and (b) Γ2 in Eq. (B2). The open circle indicates
schematically where u � km and the function ksz � �k2m − u2�1∕2 has a
branch point.
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the HM. We deem the differences between the predictions of
the multiple-scattering and HMs as a confidence gauge for the
MSM. Numerical examples using both models suggest the
MSM just derived has a wide range of validity in problems al-
ready of interest in many applications. We also compared with
the SS and found that this simpler approximation is severely
limited in validity and in our opinion it is more strongly limited
than what is commonly accepted. The effect of a substrate
supporting the monolayer was also introduced using a simple
approach of taking into account the multiple reflections of the
coherent wave between the monolayer and the substrate.

Further analysis is necessary to delineate the limits of ap-
plicability of the MSM obtained here and should be dealt with-
in prospect works. Nevertheless, we believe the model can be
readily applied to a wide variety of interesting problems with
assurance to a good extent accordingly to the confidence
gauge discussed above.

APPENDIX A
The contribution to the QCA equation coming from integrating
on dr3n on the strip where jyj − ynj < 2a can be split in two
(again, see Fig. 2). To simplify, let us assume the exclusion
area as a square of sides 4a. Then the contribution from
the left semistrip (Lss) corresponds to integrating in xn from
−∞ to xj − 2a and the contribution from the right semistrip
(Rss) corresponds to integrating from xj � 2a to ∞. That is,

Z
Lss

d3rn�·� →
Z Δz

0

Z
yj�2a

yj−2a

Z
xj−2a

−L

dxndyndzn�·�;Z
Rss

d3rn�·� →
Z Δz

0

Z
yj�2a

yj−2a

Z
L

xj�2a
dxndyndzn�·�.

The appropriate expansion of the dyadic Green's function for
the integrals over these semistrips is

G
↔
�r; r0� � −âxâxδ�r − r0� � i

2

ZZ
dksydksz
�2π�2

1
ksx

� I
↔
− k̂s�k̂

s
��

· exp�iks� · �r − r0��; (A1)

with ks� � �ksxâx � ksyây � kszâz and ksx �
��������������������������������������
k2m − �ksy�2 − �ksz�2

q
.

For an exciting field of the form, Eexc
p �r� � Eexc exp�ikD ·

rp� exp�ikexc · r�̂eexc with kexc � kexcy ây � kexcz ây and
kD � kijj − kexc, the induced field due to the integral over
d3rn over the left semistrip (in which x is always larger than
x0 whenever the integrand is not zero) is

Eind
Lss�r� �

iρs
2

Eexc

ZZ
dksydksz
�2π�2

1
ksx

� I
↔
− k̂s�k̂

s
�� · T

↔
�ks�; kexc� · êexc

×
�
exp�−iksx�xj − 2a�� − exp�iksxL�

−iksx

�

×
�
2i sin��kiy − ksy�2a�

i�kiy − ksy�

�

× exp�i�kiy − ksy�yj � exp�iks� · r�; (A2)

where ks� � ksxâx � ksyây � kszâz with ksx ���������������������������������������
k2m − �ksy�2 − �ksz�2

q
. To see whether this field contributes ap-

preciably in comparison with the fields induced by the parti-
cles in the bottom half-plane of the monolayer we must
compare Eq. (A2) with the corresponding expression for Eind

B ,

Eind
B �r; rj� �

iρs
2

Eexc

Z
dkszdksx
�2π�2

1
ksy

� I
↔
− k̂s�k̂

s
�� · T

↔
�ks�; kexc�

· êexc exp�iks� · r� ×
�
2i sin�ksxL�

iksx

�

×
�
exp�i�kiy − ksy��yj − 2a�� − exp�−i�kiy − ksy�L�

i�kiy − ksy�

�
:

(A3)

For ease of comparison let us change the integration variables
in both expressions to a polar coordinate system. We do

ZZ
dksydksz →

Z
2π

0

Z
∞

0
dθρdρ;

ZZ
dksxdksz →

Z
2π

0

Z
∞

0
dθρdρ;

in Eq. (A2) and Eq. (A3), respectively. Then we get

Eind
Lss�r� �

iρs
2

Eexc

Z
2π

0

Z
∞

0

dθρdρ
�2π�2

1����������������
k2m − ρ2

p � I
↔
− k̂s�k̂

s
��

· T
↔
�ks�;kexc� · êexc exp�iks� · r�

×
�
exp�−i

����������������
k2m − ρ2

p
�xj − 2a�� − exp�i

����������������
k2m − ρ2

p
L�

−i
����������������
k2m − ρ2

p �

×
�
2i sin��kiy − ρ sin θ�2a�

i�kiy − ρ sin θ�

�
exp�i�kiy − ρ sin θ�yj �;

(A4)

and

Eind
B �r; rj� �

iρs
2

Eexc

Z
2π

0

Z
∞

0

dθρdρ
�2π�2

1����������������
k2m − ρ2

p � I
↔
− k̂s�k̂

s
�� · T

↔
�ks�;kexc� · êexc exp�iks� · r�

�
2i sin�ρ sin θL�

iρ sin θ

�

×
�
exp�i�kiy −

����������������
k2m − ρ2

p
��yj − 2a�� − exp�−i�kiy −

����������������
k2m − ρ2

p
�L�

i�kiy −
����������������
k2m − ρ2

p
�

�
: (A5)
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We can readily compare both fields. The difference in magni-
tude of the integrals comes mainly from the effect of the “sinc”
function sin��γ − ρ sin θ�χ�∕�γ − ρ sin θ� in the corresponding
integrands, where γ and χ are γ � kiy and χ � 2a in Eq. (A4)
and, γ � 0 and χ � L in Eq. (A5). As is well known, the integral
of sin�χu�∕u over du from 0 to ∞ is π∕2 regardless of the value
of χ. In the second case, Eq. (A5), we see that in the limit
L → ∞, the sinc function behaves as a delta function (since
χ → ∞), resulting in a definite contribution upon realizing
the integral over ρ, whereas in the first case, Eq. (A4), the sinc
function spreads over a large interval on ρ and oscillates tak-
ing positive and negative values (since now χ is fixed at 2a).
Being the rest of the integrand also an oscillatory function
of ρ, we have that the integral over ρ in Eq. (A4) does not
accumulate a relevant contribution compared to that in
Eq. (A3). Therefore, we conclude that in the limit L → ∞

we have Eind
Lss�r� ≪ Eind

B �r�. Similarly, we also conclude
Eind
Rss�r� ≪ Eind

B �r�.

APPENDIX B
Let us consider Eq. (27) in the text above. The integration vari-
able is ksz while ksy is a function of ksz. We find it convenient to
do a change of variable and assume ksy as the integration vari-
able. Then, ksz becomes a function of ksy. For clarity we write
the new variable as u. Thus, we have u � �k2m − �ksz�2�1∕2 and
thus, ksz � �k2m − u2�1∕2. Rewriting Eq. (27) as an integral over u
gives

Eind
B �r;rj��−

iρs
4π Eexc

Z
Γ

du����������������
k2m −u2

p �
i4π
km

�
S�ks�;kexc�exp�iks� · r�

×
exp�i�kiy −u��yj −2a��−exp�−i�kiy −u�L�

i�kiy −u�
; (B1)

where we used dksz � −udu∕�k2m − u2�1∕2 and S�ks�; kexc� is de-
fined by Eq. (29). Recall that here, ks� � �ksyây � kszâz with
ksy � �k2m − �ksz�2�1∕2 and we are assuming y > yj − a. Then
we must have Im�ksy� > 0 at all times.

Let us identify the path of integration Γ in the variable u

bearing in mind that the integral over dksz goes from −∞ to
�∞. Note that u (i.e., ksy) has a positive real and a positive
imaginary part at all times (this is a requirement from the dya-
dic Green's function expansion). Then the path of integration
in the variable u is the following: u varies from i∞ to zero
along the imaginary axis while taking the real part of ksz �
��k2m − u2�1∕2 negative (which varies from −∞ to −km). Then
u goes from 0 to �km (along the real axis) and ksz varies from
−km to zero. This path is shown in Fig. 11(a) by the dashed
lines. Then, u goes back to zero along the real axis, and finally
it goes up the imaginary axis towards i∞, but now we must
choose the real part of ksz as positive (which goes from zero
to �km and then from �km to ∞). This path is shown in
Fig. 11(b).

Thus the integral in Eq. (B1) can be split in two. One along
the path Γ1 in Fig. 11(a) where we must choose Re�ksz� < 0
and another along the path Γ2 in Fig. 11(b) where we must
choose Re�ksz� > 0. In both cases we must choose the imagin-
ary part with the opposite sign. Then we can write

Eind
B �r; rj� �

ρs
km

Eexc

Z
Γ1

f�u;Re�ksz� < 0�du

� ρs
km

Eexc

Z
Γ2

f�u;Re�ksz� > 0�du;

where

f�u� � exp�iks� · r������������������
k2m − u2

p S�ks�; kexc�

×
exp�i�kiy − u��yj − 2a�� − exp�−i�kiy − u�L�

i�kiy − u� .

Note that each integral consists of the contribution of two seg-
ments, either C1 and C2 or −C1 and −C2 (see the figures). So
we can write the first integral along Γ1 [Fig. 11(a)] as EC1

�
EC2

and the other one along Γ1 [Fig. 11(b)] as E−C1
� E−C2

where each term is the contribution to the induced electric
field by the integral along the corresponding segment.

Note that, for a large but finite value of L, there is a remo-
vable singularity in f at u � kiy. (Both, the numerator and de-
nominator, become zero at this point but the quotient remains
finite.) Then the integrals over segments C2 and −C2 are equal
to their principal value defined by removing an infinitely small
segment around u � kiy. Therefore, we have

Eind
B �r; rj� �

ρs
km

Eexc

�
P
Z
Γ1

f�u;Re�ksz� < 0�du

� P
Z
Γ2

f�u;Re�ksz� > 0�du
�
; (B2)

where P means taking the principal value.
Now let us consider the limit L → ∞. We can remove the

term exp�−i�kiy − u�L� from the function f�u� since it oscillates
infinitely fast (except on an infinitesimally small segment
around u � kiy which is removed by taking the principal va-
lue). Upon doing so we introduce a singularity at u � kiy
but it does not modify the result since we need only the prin-
cipal value of the integral. Let us denote the resulting function
as fsing�u�.

Now, to evaluate, at least approximately, the principal va-
lue of the remaining integrals we make use of Cauchy’s the-
orem. Let us close the contours of integration used in Eq. (B2).
To the first integral in Eq. (B1) let us add a semicircle (C5) of
radius εs → 0 above the singularity and the segments C3, C4

shown in Fig. 12(a). To the second integral we add the same
segments, but since these are traveled in the opposite direc-
tion we will denote them as −C3, −C4, and −C5 as shown in
Fig. 12(b). The integrals over both closed contours are zero
since no poles are enclosed and the branch cuts of the func-
tion ksz � �k2m − u2�1∕2 can be taken such that they do not cross
the enclosed area. The contribution of the segments C5

and −C5 can be calculated by standard methods and
give −iπ��kiy − u�fsing�u ;Re�ksz� < 0��

u�kiy
and �iπ��kiy − u�fsing

�u ;Re�ksz� > 0��u�kiy
for the integration paths with Γ1 and Γ2,

respectively.
Note that within the enclosed area the imaginary part of the

number we are taking the square root in ksz � �k2m − u2�1∕2 is
negative, thus we must take the imaginary part of this square
root with the opposite sign of that of the real part. That is, we
take Im�ksz� > 0 when Re�ksz� < 0 and Im�ksz� < 0 when
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Re�ksz� > 0. It is not difficult to see that the integrand, fsing�u�,
decays exponentially as juj → ∞ within the enclosed area,
whether z is positive or negative. In fact, we have that the pro-
duct, exp�iu�y − yj � b�� exp�ikszz� decays exponentially as
Im�u� increases to infinity. In particular, we must note that
in the limit ui → ∞, while keeping ur finite (as in the enclosed
area), we have that Im�ksz� remains finite. To prove this, note
that ksz �

��������������
a� ib

p
with a � k2m − u2

r � u2
i and b � −2urui. In

the limit ui → ∞, while keeping ur finite (as in the enclosed
area) we have that a → u2

i and we have

Im�ksz� → �

�������������������������������������������
−u2

i �
������������������������
u4
i − 4u2

ru
2
i

q
2

vuut

� �

������������������������������������������������
−u2

i � u2
i

������������������������
1 − 4u2

r∕u
2
i

q
2

vuut

→ �
�����������������������������������������������
−u2

i � u2
i �1 − 2u2

r∕u
2
i �

2

s
→ �ur;

where ui ≡ Im�u� and ur ≡ Re�u�. Therefore, Im�ksz� remains
finite, and so does the factor exp�ikszz� for jzj < a. Conversely,
the factor exp�iu�y − yj � b�� decays exponentially as ui in-
creases, since y − yj � b is assumed positive. Therefore we
see that the contributions from C4 and −C4 are zero.

Now, it is apparent that the contributions from segments C3

and −C3 are not zero. For instance the contribution from C3 is
given by

EC3
�r; rj� �

ρs
km

Eexc exp�ikiy�yj − 2a��

×
Z
C3

du
S�ks�;kexc������������������

k2m − u2
p exp�iu�y − yj � 2a��

i�kiy − u�

× exp�i
�����������������
k2m − u2

q
z�; (B3)

where we take the real part of �k2m − u2�1∕2 negative and its
imaginary part positive. For E−C3

we get the same integral ex-
cept for a negative sign (the integral is performed in the op-
posite direction) and we must take the real part of the square
root �k2m − u2�1∕2 positive and its imaginary part negative. Note
that, along the paths of integration C3 and −C3 we can do u �
km � iε and integrate on du � idε. It then becomes clear that
these contributions consist of the integrals of only evanescent
fields of the form exp�i�km � iε�y� expfi�k2m − �km � iε�2�1∕2zg.
(Recall that an evanescent field is a plane wave with a com-
plex wave vector with its real and imaginary parts orthogonal
to each other.)

Then we have

EC1
� EC2

− iπ ρs
km

Eexc��kiy − u�fsing�u ;Re�ksz� < 0��
u�kiy

� EC3
� 0; (B4)

E−C1
� E−C2

� iπ ρs
km

Eexc��kiy − u�fsing�u ;Re�ksz� > 0��
u�kiy

� E−C3
� 0. (B5)

Finally, we obtain Eind
B �r; rj� as,

Eind
B �r; rj� � −

πρs
kizkm

Eexc�S�ki; kexc� exp�iki · r�

� S�kr ;kexc� exp�ikr · r�� − ρsηC3
L �r; rj�

− ρsη−C3
L �r; rj�; (B6)

where ηC3
B �r; rj�≡ EC3

�r; rj�∕ρs are readily obtained from
Eq. (B3) and is proportional to the integrals of only evanes-
cent fields. Similarly we find an expression for η−C3

B �r; rj�≡
E−C3

�r; rj�∕ρs in terms of the integral of only evanes-
cent waves.

Now, the contribution from the induced fields from the top
half-plane is

Eind
T �r; rj� �

iρs
2

Eexc

Z
dksz
2π

S�ks−;kexc�
ksy

×
exp�i�kiy � ksy�L� − exp�i�kiy � ksy��yj � 2a��

i�kiy � ksy�
× exp�iks− · r�. (B7)

This integral can be treated in the same way described above.
Again, we take ksy as the variable of integration and denote it
as u. The integral is split in two, one integral along the path Γ1

and the other along Γ2 shown in Fig. 11. In the first case we
take Re�ksz� < 0 whereas in the second as we take Re�ksz� > 0.
Then, we close the corresponding contours with either C3 and
C4 or −C3 and −C4 as we did before. The difference here is
that when we drop the rapidly oscillating term (with L the
in the argument) we do not introduce a singularity. Then,
in this case we get

Eind
T �r; rj� � EC1

� EC2
� E−C1

� E−C2

� −EC3
− E−C3

≡ −ρsηC3
T − ρsη−C3

T ;

where

ηC3
T �r; rj� �

1
km

Eexc exp�ikiy�yj � 2a��

×
Z

∞

0
dε S�ks−;kexc�����������������������������������

k2m − �km � iε�2
p

×
exp�−i�km � iε��y − yj − 2a��

�kiy � km � iε�

× exp�i
����������������������������������
k2m − �km � iε�2

q
z� (B8)

with ks− � −�km � iε�ây � �k2m − �km � iε�2�1∕2âz and we
should take the real part of �k2m − �km � iε�2�1∕2 negative
and its imaginary part positive. A similar result is found for
η−C3
T �→ r� but the integral goes from ε � ∞ to zero and we take

the real and imaginary parts of �k2m − �km � iε�2�1∕2 positive
and negative, respectively.

APPENDIX C
Introducing the exciting field given in Eq. (33) into Eq. (10),
using the plane wave expansion to the dyadic Green's function
given in (39) and the momentum representation of the transi-
tion operator in Eq. (4) yields
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E�r� � Ei�r� � iρ
2

Z
d3r0

ZZ
dksxdksy
�2π�2

1
ksz

� I
↔
− k̂s�k̂

s
��

· exp�iks� · �r − r0��
Z

d3r00
Z

d3p0

�2π�3
Z

d3p00

�2π�3

×
Z
V

d3rn exp�ip0 · �r0 − rn��T�p0;p00�

· exp�−ip00 · �r00 − rn���E1 exp�iki · r00 �̂ei
� E2 exp�ikr · r00 �̂er �; (C1)

valid for jzj > a. The integration region over d3rn �
dxndyndzn is a L × L ×Δz volume where we will take the lim-
its L → ∞ andΔz → 0 after performing the integrals. Again the
integrals over d3r0 and d3r00 can be done readily and give the
factors �2π�3δ�p00 − ki� and �2π�3δ�p0 − ks��. Then, the integrals
over d3p0 and d3p00 are trivial. We get

E�r� � Ei�r� � iρ
2

ZZ
dksxdksy
�2π�2

1
ksz

� I
↔
− k̂s�k̂

s
�� · exp�iks� · r�

×
Z
V

d3rn�E1 exp�i�ki − ks�� · rn�T
↔
�ks�; ki�

· exp�iki · rn�̂ei � E2 exp�i�kr − ks�� · rn�T
↔
�ks�; kr� · êr

× exp�ikr · rn��: (C2)

The integrals over dxn and dyn go from −L to L with L → ∞

and give the factors, 2πδ�ksx� and 2πδ�ksy − kiy� respectively (re-
call that kix � 0). The integral over dzn goes from 0 to Δz and
gives the factor Δz → 0. Using the definition in Eq. (29),
S�q;p�≡ �km∕i4π�� I

↔
− q̂ q̂� · T

↔
�q;p� · êp we get for jzj > a,

E�r� � Ei�r� − αE1S�ks�;ki� exp�iks� · r�
− αE2S�ks�;kr� exp�iks� · r�; (C3)

where ks� � kiyây � kizâz with kiy � km sin θi and kiz �
km cos θi and the “�” sign is for z > 0 whereas the “−” one
is for z < 0.
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